Matematika

Pertanyaan

bilangan log(ab4), log(a3b7), dan log(a6b9) merupakan tiga suku pertama barisan aritmatika. jika suku ke-11 barisan tersebut adalah log(ap), maka p = ...

A. 29
B. 55
C. 66
D. 95
E. 121

2 Jawaban

  • Bab Logaritma
    Matematika SMA Kelas X

    aritmatika
    2 x U2 = U1 + U3
    2 x log (a³ b⁷) = log (ab⁴) + log (a⁶b⁹)
    log (a³ b⁷)² = log (a b⁴ . a⁶ . b⁹)
    a³ˣ² . b⁷ˣ² = a¹⁺⁶ . b⁴⁺⁹
    a⁶ . b¹⁴ = a⁷ . b¹³
    a⁶ b¹⁴ - a⁷ b¹³ = 0
    a⁶ b¹³ (b - a) = 0
    b - a = 0
    b = a

    U1 = log (ab⁴) = log (a . a⁴) = log a⁵ = 5 x log a
    U2 = log (a³ b⁷) = log (a³ . a⁷) = log a¹⁰ = 10 x log a
    beda = U2 - U1 = 10 x log a - 5 log a
    beda = 5 log a

    U11 = U1 + 10 x beda
    U11 = 5 x log a + 10 x 5 log a = log (ap)
    5 log a + 50 log a = log (ap)
    55 log a = log (ap)
    log a⁵⁵ = log (ap)
    a⁵⁵ = a . p
    p = a⁵⁵ : a
    p = a⁵⁵⁻¹
    p = a⁵⁴

    **jika U11 = log p, maka p = a⁵⁵




  • log (ab^4), log (a^3.b^7), log (a^6.b^9) = U1, U2, U3
    U2 - U1 = U3 - U2
    U2 + U2 = U3 + U1
    log (a^3.b^7) + log (a^3.b^7) = log (a^6.b^9) + log (ab^4)
    log (a^3.b^7)(a^3.b^7) = log (a^6.b^9)(ab^4)
    log (a^6.b^14) = log (a^7.b^13)
    a^6.b^14 = a^7.b^13
    (b^14)/(b^13) = (a^7)/(a^6)
    b = a

    log (ab^4), log (a^3.b^7), log (a^6.b^9)
    = log (a.a^4), log (a^3.a^7), log (a^6.a^9)
    = log a^5, log a^10, log a^15
    = 5. log a, 10. log a, 15. log a

    A = U1 = 5. log a
    B = beda = 10. log a - 5. log a = 5. log a
    U11 = A + 10B
    log a^p = 5. log a + 10 (5. log a)
    p. log a = 5. log a + 50. log a
    p. log a = 55. log a
    p = 55

Pertanyaan Lainnya