Matematika

Pertanyaan

[tex] \lim_{x \to \ \frac{ \pi }{3} \frac{1 - 2 cos x}{ \pi - 3x} [/tex]

1 Jawaban

  • Dengan cara L'HOSPITAL (turunan)
    Lim (1 - 2 cos x)/(π - 3x)
    x=>π/3

    Lim (2 sin x) / -3
    x=>π/3

    = (2 sin π/3) / -3
    = (2 . 1/2 √3) / -3
    = -1/3 √3

    Cara biasa :
    Lim (1 - 2 cos x) / (π - 3x)
    x=>π/3

    Lim (1 - 2 cos x)/(π - 3x) . (1 + 2 cos x)/(1 + 2 cos x)
    x=>π/3

    Lim (1 - 4 cos^2 x) / (π - 3x)(1 + 2 cos x)
    x=>π/3

    Lim ((sin^2 x + cos^2 x) - 4 cos^2 x) / (π - 3x)/(1 + 2 cos x)
    x=>π/3

    Lim (sin^2 x - 3 cos^2 x) / (π - 3x)(1 + 2 cos x)
    x=>π/3

    Lim (sin x - √3 cos x)(sin x + √3 cos x) / (π - 3x)(1 + 2 cos x)
    x=>π/3

    Lim (2 sin (x - π/3)) (sin x + √3 cos x) / -3(x - π/3)(1 + 2 cos x)
    x=>π/3

    Lim (2/-3) . (sin (x - π/3))/(x - π/3) . (sin x + √3 cos x)/(1 + 2 cos x)
    x=>π/3

    = -2/3 . 1 . (sin π/3 + √3 cos π/3)/(1 + 2 cos π/3)
    = -2/3 . (1/2 √3 + 1/2 √3) / (1 + 2(1/2))
    = -2/3 . (√3/2)
    = -1/3 √3

Pertanyaan Lainnya