Matematika

Pertanyaan

Ini soal integral lipat dua. Jika p=integral dengan batas 0 sampai 1 integral dengan batas x^2 sampai x dy dx, maka nilai dari p+3=....

2 Jawaban

  • [tex] \int\limits^1_0 { \int\limits^ x _{x^2} {} \, dy } \, dx =P \\ \\ \int\limits^1_0 { y|^ x _{x^2} } \, dx =P \\ \\ \int\limits^1_0 { x - x^{2} } \, dx =P \\ \\ \frac{1}{2} x^{2} - \frac{1}{3} x^{3} |^1_0 =P \\ \\ (\frac{1}{2} 1^{2} - \frac{1}{3} 1^{3}) - (\frac{1}{2} 0^{2} - \frac{1}{3} 0^{3}) =P \\ \\ \frac{1}{2} - \frac{1}{3}=P \\ \\ \frac{1}{6} =P[/tex]
    jadi,
    [tex]P +3 = \frac{1}{6}+3 = 3 \frac{1}{6}= \frac{19}{6} [/tex]


    gini bukan ya.. maksudnya?~ ^^
  • [tex]\displaystyle \int\limits^1_0\int\limits^{x}_{x^2}\,dy\,dx=\int\limits^1_0y|^{x}_{x^2}\,dx\\\int\limits^1_0\int\limits^{x}_{x^2}\,dy\,dx=\int\limits^1_0x-x^2\,dx\\\int\limits^1_0\int\limits^{x}_{x^2}\,dy\,dx=\left\frac12x^2-\frac13x^3\right|^1_0\\\int\limits^1_0\int\limits^{x}_{x^2}\,dy\,dx=\frac12(1^2-0^2)-\frac13(1^3-0^3)\\\int\limits^1_0\int\limits^{x}_{x^2}\,dy\,dx=\frac12-\frac13\\\int\limits^1_0\int\limits^{x}_{x^2}\,dy\,dx=\frac16\\p=\frac16\\\\p+3=\frac16+3\\\boxed{\boxed{p+3=3\frac16}}[/tex]

Pertanyaan Lainnya